113 research outputs found

    Spatial and temporal variations in the incidence of dust storms in Saudi Arabia revealed from in situ observations

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Monthly meteorological data from 27 observation stations provided by the Presidency of Meteorology and Environment (PME) of Saudi Arabia were used to analyze the spatial and temporal distribution of atmospheric dust in Saudi Arabia between 2000 and 2016. These data were used to analyze the effects of environmental forcing on the occurrence of dust storms across Saudi Arabia by considering the relationships between dust storm frequency and temperature, precipitation, and wind variables. We reveal a clear seasonality in the reported incidence of dust storms, with the highest frequency of events during the spring. Our results show significant positive relationships (p < 0.005) between dust storm occurrence and wind speed, wind direction, and precipitation. However, we did not detect a significant relationship with temperature. Our results reveal important spatial patterns, as well as seasonal and inter-annual variations, in the occurrence of dust storms in Saudi Arabia. For instance, the eastern part of the study area experienced an increase in dust storm events over time, especially in the region near Al-Ahsa. Similarly, an increasing trend in dust storms was also observed in the west of the study area near Jeddah. However, the occurrence of dust storm events is decreasing over time in the north, in areas such as Hail and Qaisumah. Overall, the eastern part of Saudi Arabia experiences the highest number of dust storms per year (i.e., 10 to 60 events), followed by the northern region, with the south and the west having fewer dust storm events (i.e., five to 15 events per year). In addition, our results showed that the wind speeds during a dust storm are 15-20 m/s and above, while, on a non-dust day, the wind speeds are approximately 10-15 m/s or lower. Findings of this study provide insight into the relationship between environmental conditions and dust storm occurrence across Saudi Arabia, and a basis for future research into the drivers behind these observed spatio-temporal trends

    Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale

    Get PDF
    Soil organic carbon (SOC) plays a major role in the global carbon budget. It can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Improving the tools that model the spatial distributions of SOC stocks at national scales is a priority, both for monitoring changes in SOC and as an input for global carbon cycles studies. In this paper, we compare and evaluate two recent and promising modelling approaches. First, we considered several increasingly complex boosted regression trees (BRT), a convenient and efficient multiple regression model from the statistical learning field. Further, we considered a robust geostatistical approach coupled to the BRT models. Testing the different approaches was performed on the dataset from the French Soil Monitoring Network, with a consistent cross-validation procedure. We showed that when a limited number of predictors were included in the BRT model, the standalone BRT predictions were significantly improved by robust geostatistical modelling of the residuals. However, when data for several SOC drivers were included, the standalone BRT model predictions were not significantly improved by geostatistical modelling. Therefore, in this latter situation, the BRT predictions might be considered adequate without the need for geostatistical modelling, provided that i) care is exercised in model fitting and validating, and ii) the dataset does not allow for modelling of local spatial autocorrelations, as is the case for many national systematic sampling schemes

    Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France

    Get PDF
    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils

    Spatial distribution of soil organic carbon stocks in France

    Get PDF
    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC) stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. &lt;br&gt;&lt;br&gt; We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils. &lt;br&gt;&lt;br&gt; The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions) over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the previously published approach at the European level greatly overestimates SOC stocks

    Assessing bundles of ecosystem services from regional to landscape scale: Insights from the French Alps

    Get PDF
    Copyright © 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological SocietyAssessments of ecosystem services (ES) and biodiversity (hereafter ecological parameters) provide a comprehensive view of the links between landscapes, ecosystem functioning and human well-being. The investigation of consistent associations between ecological parameters, called bundles, and of their links to landscape composition and structure is essential to inform management and policy, yet it is still in its infancy. We mapped over the French Alps an unprecedented array of 18 ecological parameters (16 ES and two biodiversity parameters) and explored their co-occurrence patterns underpinning the supply of multiple ecosystem services in landscapes. We followed a three-step analytical framework to i) detect the ES and biodiversity associations relevant at regional scale, ii) identify the clusters supplying consistent bundles of ES at subregional scale and iii) explore the links between landscape heterogeneity and ecological parameter associations at landscape scale. We used successive correlation coefficients, overlap values and self-organizing maps to characterize ecological bundles specific to given land cover types and geographical areas of varying biophysical characteristics and human uses at nested scales from regional to local. The joint analysis of land cover richness and ES gamma diversity demonstrated that local landscape heterogeneity alone did not imply compatibility across multiple ecosystem services, as some homogeneous landscape could supply multiple ecosystem services. Synthesis and applications. Bundles of ecosystem services and biodiversity parameters are shaped by the joint effects of biophysical characteristics and of human history. Due to spatial congruence and to underlying functional interdependencies, ecological parameters should be managed as bundles even when management targets specific objectives. Moreover, depending on the abiotic context, the supply of multiple ecosystem services can arise either from deliberate management in homogeneous landscapes or from spatial heterogeneity.ERAnet BiodivERsA project CONNECTFrench Agence Nationale pour la RechercheEU project VOLANT

    SOC sequestration affected by fertilization in rice-based cropping systems over the last four decades

    Get PDF
    Enhancing soil organic carbon (SOC) stocks through fertilization and crop rotation will contribute to sustaining crop productivity and mitigating global warming. In this study, we analyzed the differences in total SOC stocks and their driving factors in the topsoil (0–20 cm) with various fertilization measures in two puddled lowland rice-based cropping systems (i.e., rice-wheat rotation and double rice rotation systems) over the last four decades from seven long-term experiments in the Yangtze River catchment. The soil types include Cambisol, Luvisol, and Anthrosol. The treatments include no fertilizer application (CK), application of chemical nitrogen, phosphorus and potassium fertilizers (NPK) and a combination of NPK and manure applications (NPKM). Every year, field was ploughed to a depth of 15–20 cm before wheat sowing and rice transplanting. Residue was removed after plant harvesting. Results showed that during the last four decades, the average crop grain yield ranged from 1,151 ± 504 kg ha−1 yr−1 under CK treatment to 7,553 ± 1,373 kg ha−1 yr−1 under NPKM treatment. The topsoil SOC stock significantly increased by 8.6 t ha−1 on average under NPKM treatment in rice-wheat system and by 2.5–6.4 t ha−1 on average under NPK and NPKM treatments in double rice system as compared with CK. A higher SOC sequestration rate and a longer SOC sequestration duration were found in NPKM treatment than that in NPK treatment in both cropping systems. The highest SOC stock ratio (SOC stock in fertilizer treatments to CK) was observed under the NPKM treatment in both cropping systems, though no significant difference was found between these two cropping systems. However, the fertilization-induced relative increase of the SOC stock was 109.5% and 45.8% under the NPK and NPKM treatments, respectively in the rice-wheat system than that in the double rice system. This indicates that the rice-wheat system is more conducive for SOC sequestration. RF and SEM analyses revealed that the magnitude and influencing factors driving SOC sequestration varied between two systems. In the double rice system, continuous flooding weakens the influence of precipitation on SOC sequestration and highlights the importance of soil properties and C input. In contrast, soil properties, C input and climate factors all have important impacts on SOC sequestration in rice-wheat system. This study reveals that the rice-wheat system is more favorable for SOC sequestration despite its lower C input compared to the double rice system in China’s paddies

    Mapping mean total annual precipitation in Belgium, by investigating the scale of topographic control at the regional scale

    Get PDF
    Accurate precipitation maps are essential for ecological, environmental, element cycle and hydrological models that have a spatial output component. It is well known that topography has a major influence on the spatial distribution of precipitation and that increasing topographical complexity is associated with increased spatial heterogeneity in precipitation. This means that when mapping precipitation using classical interpolation techniques (e.g. regression, kriging, spline, inverse distance weighting, etc.), a climate measuring network with higher spatial density is needed in mountainous areas in order to obtain the same level of accuracy as compared to flatter regions. In this study, we present a mean total annual precipitation mapping technique that combines topographical information (i.e. elevation and slope orientation) with average total annual rain gauge data in order to overcome this problem. A unique feature of this paper is the identification of the scale at which topography influences the precipitation pattern as well as the direction of the dominant weather circulation. This method was applied for Belgium and surroundings and shows that the identification of the appropriate scale at which topographical obstacles impact precipitation is crucial in order to obtain reliable mean total annual precipitation maps. The dominant weather circulation is determined at 260°. Hence, this approach allows accurate mapping of mean annual precipitation patterns in regions characterized by rather high topographical complexity using a climate data network with a relatively low density and/or when more advanced precipitation measurement techniques, such as radar, aren't available, for example in the case of historical data

    Manure amendment acts as a recommended fertilization for improving carbon sequestration efficiency in soils of typical drylands of China

    Get PDF
    It is generally known that soil organic carbon (SOC) stocks tend to increase with increasing C input, whereas the C sequestration efficiency (CSE), i.e. the conversion ratio of C input to SOC, differs depending on the amount and type of C input. However, there still exists the need to better understand the impact of various fertilization practices on CSE. We studied the data from 8 long-term experiments located in the main dryland region of China in order to comprehensively assess the key drivers of CSE in the plough layer considering nearly four decades of various fertilizer treatments, i.e. no fertilizer (CK), chemical nitrogen, phosphorus and potassium (NPK/NP), chemical fertilizers plus manure (NPKM/NPM/NM) and straw (NPKS/NPS/NS). Our results showed that manure amendment had the most significant fertilization effect on SOC sequestration with the average CSE of 14.9%, which was significantly higher than that of chemical fertilizations (9.0%) and straw return treatments (7.9%). And manure amendment also had the highest average SOC increase rate of 684 kg C ha-1 yr-1. Variance partitioning analysis (VPA) illustrated that CSE of the main dryland region of China was mostly controlled by edaphic characteristics (32.2%), especially the soil C/N ratio and clay content. The VPA and structural equation modeling (SEM) revealed that the magnitude and influencing factors driving CSE varied among different fertilizer treatments. Soil total N was the limiting factor for CSE in the CK treatment, whereas the soil C/N ratio and pH were the main explanatory factors for CSE in the long-term chemical NPK fertilizer treatment. The negative impact of C input from straw was the main driver of CSE under straw return treatments, though C input had a positive effect on soil physical properties improvement. However, when considering manure amendments, the improvement of soil nutrients and clay content controlled CSE, underlining the main positive direct effect of soil chemical properties. In a nutshell, our results recommend manure plus chemical fertilizers as a sustainable practice for improving C sequestration rate and efficiency in dryland cropping systems

    Tracing of particulate organic C sources across the terrestrial-aquatic continuum, a case study at the catchment scale (Carminowe Creek, southwest England)

    Get PDF
    Soils deliver crucial ecosystem services, such as climate regulation through carbon (C) storage and food security, both of which are threatened by climate and land use change. While soils are important stores of terrestrial C, anthropogenic impact on the lateral fluxes of C from land to water remains poorly quantified and not well represented in Earth system models. In this study, we tested a novel framework for tracing and quantifying lateral C fluxes from the terrestrial to the aquatic environment at a catchment scale. The combined use of conservative plant-derived geochemical biomarkers n-alkanes and bulk stable δ13C and δ15N isotopes of soils and sediments allowed us to distinguish between particulate organic C sources from different land uses (i.e. arable and temporary grassland vs. permanent grassland vs. riparian woodland vs. river bed sediments) (p < 0.001), showing an enhanced ability to distinguish between land use sources as compared to using just n-alkanes alone. The terrestrial-aquatic proxy (TAR) ratio derived from n-alkane signatures indicated an increased input of terrestrial-derived organic matter (OM) to lake sediments over the past 60 years, with an increasing contribution of woody vegetation shown by the C27/C31 ratio. This may be related to agricultural intensification, leading to enhanced soil erosion, but also an increase in riparian woodland that may disconnect OM inputs from arable land uses in the upper parts of the study catchment. Spatial variability of geochemical proxies showed a close coupling between OM provenance and riparian land use, supporting the new conceptualization of river corridors (active river channel and riparian zone) as critical zones linking the terrestrial and aquatic C fluxes. Further testing of this novel tracing technique shows promise in terms of quantification of lateral C fluxes as well as targeting of effective land management measures to reduce soil erosion and promote OM conservation in river catchments

    Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England)

    Full text link
    Soils represent the largest reservoir of organic carbon (OC) on land. Upon mobilization, this OC is either returned to the atmosphere as carbon dioxide (CO2) or transported and ultimately locked into (marine) sediments, where it will act as a long-term sink of atmospheric CO2. These fluxes of soil OC are, however, difficult to evaluate, mostly due to the lack of a soil-specific tracer. In this study, a suite of branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are membrane lipids of soil bacteria, is tested as specific tracers for soil OC from source (soils under arable land, ley, grassland, and woodland) to sink (Loe Pool sediments) in a small catchment located in southwest England (i.e. Carminowe Creek draining into Loe Pool). The analysis of brGDGTs in catchment soils reveals that their distribution is not significantly different across different land use types (p > 0:05) and thus does not allow land-use-specific soil contributions to Loe Pool sediments to be traced. Furthermore, the significantly higher contribution of 6-methyl brGDGT isomers in creek sediments (isomerization ratio (IR) D 0:48 ± 0:10, mean ± standard deviation (SD); p < 0:05) compared to that in catchment soils (IR D 0:28±0:11) indicates that the initial soil signal is substantially altered by brGDGT produced in situ. Similarly, the riverine brGDGT signal appears to be overwritten by lacustrine brGDGTs in the lake sedimentary record, indicated by remarkably lower methylation of branched tetraethers (MBT05ME D 0:46 ± 0:02 in creek bed sediments and 0:38 ± 0:01 in lake core sediments; p < 0:05) and a higher degree of cyclization (DC D 0:23±0:02 in creek bed sediments and 0:32±0:08 in lake core sediments). Thus, in this small catchment, brGDGTs do not allow us to trace soil OC transport. Nevertheless, the downcore changes in the degree of cyclization and the abundance of isoprenoid GDGTs produced by methanogens in the Loe Pool sediment do reflect local environmental conditions over the past 100 years and have recorded the eutrophication history of the lake. © 2020 Author(s)
    • …
    corecore